“ Complete - Simple ” Distributive Lattices
نویسندگان
چکیده
It is well known that the only simple distributive lattice is the twoelement chain. We can generalize the concept of a simple lattice to complete lattices as follows: a complete lattice is complete-simple if it has only the two trivial complete congruences. In this paper we show the existence of infinite complete-simple distributive lattices. “COMPLETE-SIMPLE” DISTRIBUTIVE LATTICES G. GRÄTZER AND E. T. SCHMIDT Revised: December 22, 1992
منابع مشابه
Distributive Lattices of λ-simple Semirings
In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left $k$-radicals $Lambda(a)={x in S | a stackrel{l}{longrightarrow^{infty}} x}$ induced by the transitive closure $stackrel{l}{longrightarrow^{infty}}$ of the relation $stackrel{l}{longrightarrow}$ which induce the equivalence relation $lambda$. Again non-transit...
متن کاملAnother Construction of Complete-simple Distributive Lattices
It is well known that the only simple distributive lattice is the twoelement chain. In an earlier paper, we introduced the concept of a completesimple lattice, and proved the existence of infinite complete-simple distributive lattices. In this paper we provide a new proof which is easier to visualize.
متن کاملFree Distributive Completions of Partial Complete Lattices
The free distributive completion of a partial complete lattice is the complete lattice that it is freely generated by the partial complete latticèin the most distributive way'. This can be described as being a universal solution in the sense of universal algebra. Free distributive completions generalize the constructions of tensor products and of free completely distributive complete lattices o...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملPriestley Duality for Many Sorted Algebras and Applications
In this work we develop a categorical duality for certain classes of manysorted algebras, called many-sorted lattices because each sort admits a structure of distributive lattice. This duality is strongly based on the Priestley duality for distributive lattices developed in [3] and [4] and on the representation of many sorted lattices with operators given by Sofronie-Stokkermans in [6]. In this...
متن کامل